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Abstract: For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if
every path of order k inG contains at least one vertex from S. The cardinality of a minimum k-path vertex cover is
denoted by ψk(G). In this paper, we give some bounds and the exact values in special cases for ψk of the Cartesian,
and lexicographic products of some graphs.
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1 Introduction
Let x be a real number, denoted by ⌊x⌋ the maximum
integer no more than x, and denoted by ⌈x⌉ the min-
imum integer no less than x. For any integers a < b,
let [a, b] denote the set of integers {a, a + 1, · · · , b}
for simplicity. We use V (G), E(G) to denote the ver-
tex set and the edge set of graph G, respectively. The
order of a path P is the number of vertices on P while
the length of a path is the number of edges of P .

In recent years, many parameters and graph class-
es were studied. For example, in [30], Zuo et al. gave
the exact values of the linear (n − 1)-arboricity of
some Cartesian product graphs, in [31], Zuo showed
that a Conjecture holds for all unicyclic graphs and all
bicyclic graphs, in [28], Xue, Zuo et al. studied the
hamiltonicity and path t-coloring of Sierpiński-like
graphs, in [13], Jin and Zuo gave the further ordering
bicyclic graphs with respect to the Laplacian spectra
radius, in [16], Lai et al. gave a survey for the more
recent developments of the research on supereulerian
graphs and the related problems, and in [32], Zuo et
al. studied the equitable colorings of Cartesian prod-
uct graphs of wheels with complete bipartite graphs.

For a graph G and a positive integer k, a sub-
set S of the vertex set of G is called a k-path ver-
tex cover if every path of order k in G contains at
least one vertex from S. The cardinality of a mini-
mum k-path vertex cover is denoted by ψk(G). The
motivation for the k-path vertex cover arises from se-
cure communications in wireless sensor networks in
[19]. The topology of wireless sensor networks can
be represented by a graph, in which vertices represen-
t sensor devices and edges represent communication
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channels between pairs of sensor devices. Traditional
security techniques cannot be applied directly to wire-
less sensor networks since sensor devices are limited
in their computation, energy, and communication ca-
pabilities. Furthermore, they are often deployed in ac-
cessible areas, where they can be captured by an at-
tacker. Generally speaking, a standard sensor device
is not taken into account as tamper-resistant and it is
unnecessary to make all devices of a sensor network
tamper-proof due to increasing cost. Hence, the de-
sign of wireless sensor networks safety contracts has
become a challenge in security research. We focus on
the Canvas scheme [8, 19, 20, 23] which should pro-
vide data integrity in a sensor network. The scheme
combines the properties of cryptographic primitives
and the network topology. The model distinguishes
between two kinds of sensor element protected and
unprotected. The attacker is incapable to copy secret-
s from a protector. This property can be realized by
making the protector tamper-resistant or placing the
protector at a safe location, where trapping is prob-
lematic. On the other hand, an unprotected device can
be catched by the assailant, who can also copy secrets
from the device and gain control over it. During the
deployment and initialization of a sensor network, it
should be ensured, that at least one defended node ex-
ists on each path of the length k − 1 in the communi-
cation graph [19]. The matter to minimize the cost of
the network by minimizing the number of protectors
is expressed in [19].

The model of communications in wireless sensor
networks is just equivalent the traffic control which
was formulated in [25]. The increasing cars and buses
result in more and more traffic accidents, hence pos-
ing the installment of cameras to be in an urgent state.
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If every crossing is installed with several cameras, the
cost would be enormous and unnecessary since the in-
stalling fees can vary greatly due to different factors.
Hence we need to install cameras at certain crossings
that can ensure that a driver will encounter at least
one camera within n crossings, and, at the same time,
guarantee the lowest cost. This practical issue can,
then, be turned into the vertex cover Pn problem.

The concept of k-path vertex cover is a general-
ization of the vertex cover. Clearly ψ2(G) coincides
with the size of a minimum vertex cover, moreover

ψ2(G) = |V (G)| − α(G),

where α(G) is the independence number of graph G.
This gives an interesting connection to the well stud-
ied independence number [11, 12, 22, 27].

A subset of vertices in graphG is called a dissoci-
ation set if it induce a subgraph with maximum degree
at most 1. The number of vertices in a maximum car-
dinality set in G is called the dissociation number of
G and is denoted by diss(G). It is obvious that

ψ3(G) = |V (G)| − diss(G).

It was shown that determining the dissociation num-
ber of G is NP-hard in the class of bipartite graphs
[29]. The dissociation number problem was studied
in [1, 2, 5, 9]. We can see a survey for this results in
[21]. Some approximation algorithms for ψ3(G) were
studied in [24, 25, 26] and an exact algorithm for com-
puting ψ3(G) in running time O(1.5171n) for a graph
of order n was presented in [14]. Also, a polynomi-
al time randomized approximation algorithm with an
expected approximation ratio of 23

11 for the minimum
3-path vertex cover was presented.

It was shown that for any fixed integer k ≥ 2
the computing ψk(G) problem is in general NP-hard
but for tree the problem can be solved in linear time,
as shown in [3]. The authors also gave some upper
bounds on the value of ψk(G) and provide several es-
timations and the exact values of ψk(G).

The concept of the k-path vertex cover was al-
so studied in different graph products. The Cartesian
product G � H of graphs G = (V (G), E(G)) and
H = (V (H), E(H)) has the vertex set V (G)×V (H),
and vertices (u1, v1), (u2, v2) are adjacent whenever
u1 = u2 and v1v2 ∈ E(G), or u1u2 ∈ E(G) and
v1 = v2.

The lexicographic product G ◦H of graphs G =
(V (G), E(G)) and H = (V (H), E(H)) has the ver-
tex set V (G) × V (H), and vertices (u1, v1), (u2, v2)
are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and
v1v2 ∈ E(H).

For the Cartesian product of two paths, an asymp-
totically tight bound for ψ3 and the exact value for

ψ3 was given in [4]. Also, an upper bound for ψ3

and a lower bound of ψk of regular graphs were p-
resented. Some bounds for the Cartesian product of
two paths were improved in [17] and extended to the
strong product of paths. In [17] some results for the
lexicographic product of arbitrary graphs were also p-
resented. For the lexicographic product of two arbi-
trary graphs, the bounds were presented for ψk, fur-
thermore, ψ2 and ψ3 were exactly determined in [3].
Recently, a lower and an upper bounds for ψk of the
rooted product graphs were presented in [18], more-
over, ψ2 and ψ3 were exactly determined.

It is obvious that the following two results hold.

Lemma 1. If positive integers k ≥ 2 and k ≤ n, then

ψk(Pn) = ⌊nk ⌋,
ψk(Cn) = ⌈nk ⌉,
ψk(Kn) = n− k + 1.

Lemma 2. IfH is a subgraph ofG and k is a positive
integer, then

ψk(G) ≥ ψk(H).

This is trivial since we can obtain one k-path ver-
tex cover S ∩ V (H) of H from every k-path vertex
cover S of G for every subgraph H of G.

Lemma 3. [4] For k ≥ 4, n ≥ 2⌈
√
k⌉, and m ≥

3⌈
√
k⌉, the following holds

ψk(Pn � Pm) ≥
mn

24⌈
√
k⌉
.

In this paper, we will present several results on
ψk for Cartesian product and lexicographic product of
some graphs.

2 Main results
Let G and H be arbitrary graphs, for a fixed vertex
v ∈ V (H), we refer to the set V (G) × {v} as a
G-layer. Similarly {u} × V (H), for a fixed vertex
u ∈ V (G), is an H-layer. Whenever referring to a
specificG- orH- layer, we denote them byGv or uH ,
respectively. It is clear that in the Cartesian and lex-
icographic products, a G-layer or H-layer is isomor-
phic to G or H , respectively.

Clearly, ψ1(G) = |V (G)| and ψk(G) = 0 for any
graph G and each integer k > |V (G)|, so we always
suppose that 2 ≤ k ≤ |V (G)| for ψk(G) in the fol-
lowing.

Lemma 4. If n ≥ 2 and ⌈n2 ⌉+ 1 ≤ k ≤ n+ 1, then

ψk(P2 �Kn) = n.
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Proof. Firstly we will construct a k-path vertex cover
with n vertices to prove that

ψk(P2 �Kn) ≤ n.

Let

S1 = {(u1, vj) ∈ V (P2 �Kn) | k ≤ j ≤ n}

with |S1| = n− k + 1, and

S2 = {(u2, vj) ∈ V (P2 �Kn) | 1 ≤ j ≤ k − 1}

with |S2| = k − 1. It is easy to see that S = S1 ∪ S2
is a k-path vertex cover, since the largest connected
subgraph of P2 � Kn with all vertices uncovered is
isomorphic to Kk−1. So we have

ψk(P2 �Kn) ≤ |S| = n.

Secondly we will prove that

ψk(P2 �Kn) ≥ n.

Assume to the contrary that T is a k-path vertex cover
of the graph P2 � Kn, with |T | ≤ n − 1. Clearly
there exist two vertices (u1, vj), (u2, vj) /∈ T , where
1 ≤ j ≤ n. Therefore, lying in the layer u1Kn, all the
vertices which are not covered by T can form a path
P1 with the terminate vertex (u1, vj). And lying in the
layer u2Kn, all the vertices which are not covered by
T can form a path P2 with the original vertex (u2, vj).
Set

P = P1 + (u1, vj)(u2, vj) + P2.

Since

|V (P )| = 2n−|V (T )| ≥ 2n− (n− 1) = n+1 ≥ k,

we have a path of order at least k with no vertices
belong to T , a contradiction. ⊓⊔

Lemma 5. If n ≥ 2 and k ≥ n+ 2, then

ψk(Pa �Kn) ≥ n,

where a = ⌈k−1
n ⌉+ 1.

Proof. We will prove our result by contradiction. As-
sume to the contrary that S is a k-path vertex cover of
the graph Pa�Kn with |S| ≤ n−1. Let (ui, vji) and
(ui, vli) be the first vertex and the last vertex, which
lie in P and belong to the layer uiKn, respectively,
where 1 ≤ i ≤ a, 1 ≤ ji ≤ n and 1 ≤ li ≤ n. Since

|V (Pa �Kn)| − |V (S)|
≥ n(⌈k−1

n ⌉+ 1)− (n− 1)

≥ n(k−1
n + 1)− (n− 1) = k,

we only need to show that all the vertices of Pa�Kn,
not covered by S, can form a path P . Moreover, if
(ui, vji) ≠ (ui, vli), then all the vertices that lie in
P and between (ui, vji) and (ui, vli) should belong to
V (uiKn). We will show our result by induction for a.

Claim 1. For a = 3, we can get a contradiction.
We will deal with the result in three cases.

Case 1. Suppose that all the vertices which be-
long to S lie in the same layer uiKn completely for
some i ∈ [1, 3]. It is easy to prove that all the vertices
of Pa�Kn, not covered by S, can induce a path since
there is a vertex (ui, vj) ̸∈ S for some 1 ≤ j ≤ n, a
contradiction.

Case 2. Suppose that all the vertices which be-
long to S lie in two layers ubKn and ucKn completely,
where 1 ≤ b ̸= c ≤ 3.

Clearly, in this case, n ≥ 3 and there are at least 2
vertices on each layer which are not covered by S. If
all the vertices which belong to S lie in the two layers
u1Kn and u2Kn, then there exist two vertices (u1, vj),
(u2, vj) /∈ S for some j with 1 ≤ j ≤ n. There-
fore, lying in the layer u1Kn, all the vertices which
are not covered by S can form a path P1 with the ter-
minate vertex (u1, vj); Lying in the layer u2Kn, all the
vertices which are not covered by S can form a path
P2 with the original vertex (u2, vj) and the terminate
vertex (u2, vl); All the vertices which lie in the lay-
er u3Kn can form a path P3 with the original vertex
(u3, vl), where 1 ≤ l ≤ n and l ≠ j. Set

P = P1+(u1, vj)(u2, vj)+P2+(u2, vl)(u3, vl)+P3.

Then all the vertices of Pa�Kn which are not covered
by S induce a path P , a contradiction.

If all the vertices which belong to S lie in the two
layers u2Kn and u3Kn, then we can get a contradic-
tion similarly.

If all the vertices which belong to S lie in the t-
wo layers u1Kn and u3Kn, then n ≥ 3 and there exist
vertices (u1, vj), (u3, vl) /∈ S, where 1 ≤ j ≠ l ≤ n.
Therefore, lying in the layer u1Kn, all the vertices
which are not covered by S can form a path P1 with
the terminate vertex (u1, vj); All the vertices which
lie in the layer u2Kn can form a path P2 with the orig-
inal vertex (u2, vj) and the terminate vertex (u2, vl);
Lying in the layer u3Kn, all the vertices which are not
covered by S can form a path P3 with the original ver-
tex (u3, vl). Set

P = P1+(u1, vj)(u2, vj)+P2+(u2, vl)(u3, vl)+P3.

Then, all the vertices of Pa �Kn which are not cov-
ered by S form a path P with order at least k, a con-
tradiction, too.
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Case 3. Suppose that S ∩ui Kn ̸= ∅ for each
i ∈ [1, 3]. Then n ≥ 4 and there exist four vertices
(u1, vj), (u2, vj), (u2, vl) and (u3, vl) which are not in
S for some 1 ≤ j ≠ l ≤ n, since |S| ≤ n− 1. There-
fore, lying in the layer u1Kn, all the vertices which are
not covered by S can form a path P1 with the termi-
nate vertex (u1, vj); Lying in the layer u2Kn, all the
vertices which are not covered by S can form a path
P2 with the original vertex (u2, vj) and the terminate
vertex (u2, vl); Lying in the layer u3Kn, all the ver-
tices which are not covered by S can form a path P3

with the original vertex (u3, vl). Set

P = P1+(u1, vj)(u2, vj)+P2+(u2, vl)(u3, vl)+P3.

Then, not covered by S, all the vertices of Pa � Kn

form a path P with order at least k, and thus we also
get a contradiction.

Claim 2. Assume that the lemma is true for a = q ≥
3. Then we can get a contradiction for a = q + 1.

In the following we will deal with the result in
three cases for a = q + 1.

Case 1. If S ⊆ (V (Pq+1 �Kn) − V (uq+1Kn)),
then, by the induction hypothesis, we assume that, all
the vertices of (V (Pq+1�Kn)−V (uq+1Kn)) that are
not covered by S can form a path P1 with the termi-
nate vertex (uq, vl), where 1 ≤ l ≤ n. All the vertices
which lie in the layer uq+1Kn can form a path P2 with
the original vertex (uq+1, vl). Set

P = P1 + (uq, vl)(uq+1, vl) + P2.

Then all the vertices of Pq+1�Kn which are not cov-
ered by S form a path P with order at least k, a con-
tradiction.

Case 2. If S ⊆ (V (Pq+1 � Kn) − V (u1Kn)),
then we can get a contradiction similarly.

Case 3. Assume that S ∩u1 Kn ≠ ∅ and S ∩uq+1

Kn ≠ ∅. By the induction hypothesis, all the vertices
which are not covered by S and lie in layers uiKn

can form a path P1 with the terminate vertex lying in
the layer uqKn, where 1 ≤ i ≤ q. Let (uq−1, vj) be
the last vertex lying in P1 and belonging to the lay-
er uq−1Kn. Denote by V1 the vertex set of (uq−1, vj)
together with all the vertices which lie in P1 and pre-
cede (uq−1, vj). Set P2 = P1[V1], and let (uq−1, vj)
be the terminate vertex of P2, where 1 ≤ j ≤ n.
Since |V (P2)| ≥ 1, there are at most n − 2 ver-
tices being covered by S and lying in the two layer-
s uqKn and uq+1Kn. So, there exist vertices (uq, vl),
(uq+1, vl) /∈ S, where 1 ≤ l ≤ n and l ≠ j. Lying
in the layer uqKn, all the vertices which are not cov-
ered by S can form a path P3 with the original ver-
tex (uq, vj) and the terminate vertex (uq, vl); Lying in

the layer uq+1Kn, all the vertices which are not cov-
ered by S can form a path P4 with the original vertex
(uq+1, vl). Set

P = P2 + (uq−1, vj)(uq, vj) + P3

+ (uq, vl)(uq+1, vl) + P4.

Then, all the vertices of Pa �Kn which are not cov-
ered by S form a path P with order at least k, a con-
tradiction, too. ⊓⊔

Theorem 6. For m ≥ 2 and n ≥ 2, the following
holds

(1) If 2 ≤ k ≤ ⌈n2 ⌉, then

ψk(Pm �Kn) = m(n− k + 1).

(2) If ⌈n2 ⌉+ 1 ≤ k ≤ n+ 1, then

ψk(Pm�Kn) =

{ mn
2 , if m is even,

(m+1)n
2 − k + 1, if m is odd.

(3) Let n+ 1 < k < n⌈m−1
2 ⌉+ 1. If

mn ≡ l(mod (n+ k − 1))

for l ∈ [1, k − 1] ∪ {0}, then

n⌊ m

⌈k−1
n ⌉+ 1

⌋ ≤ ψk(Pm �Kn) ≤ n⌊ mn

n+ k − 1
⌋.

Moreover, if k ≡ 1(mod n), then

ψk(Pm �Kn) = n⌊ mn

n+ k − 1
⌋.

If mn ≡ l(mod (n + k − 1)) for l ∈ [k, n + k − 2],
then

n⌊ m
⌈ k−1

n
⌉+1

⌋ ≤ ψk(Pm �Kn)

≤ mn− (k − 1)⌊ mn
n+k−1⌋.

(4) If n⌈m−1
2 ⌉+ 1 ≤ k ≤ (m− 1)n+ 1, then

ψk(Pm �Kn) = n.

(5) If (m− 1)n+ 2 ≤ k ≤ mn, then

ψk(Pm �Kn) = mn− k + 1.

Proof. (1) Firstly we will construct a k-path vertex
cover with m(n− k + 1) vertices to prove that

ψk(Pm �Kn) ≤ m(n− k + 1).

Let

Si = {(ui, vj) ∈ V (Pm �Kn)|k ≤ j ≤ n}
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for odd i and

Si = {(ui, vj) ∈ V (Pm �Kn)|1 ≤ j ≤ n− k + 1}

for even i, where 1 ≤ i ≤ m. Clearly |Si| = n− k +
1. It is obvious that S = ∪mi=1Si is a k-path vertex
cover, since the largest connected subgraph of Pm �
Kn with all vertices uncovered is isomorphic toKk−1.
Therefore,

ψk(Pm �Kn) ≤ |S| = m(n− k + 1).

Secondly, since each layer uiKn is isomorphic to
Kn for 1 ≤ i ≤ m, we need at least ψk(Kn) vertices
to cover each Kn-layer and we have m such layers.
Therefore,

ψk(Pm �Kn) ≥ mψk(Kn) = m(n− k + 1)

by Lemma 1.
(2) Firstly, we will construct a k-path vertex cov-

er S to prove that

ψk(Pm�Kn) ≤
{ mn

2 , if m is even,
(m+1)n

2 − k + 1, if m is odd.

Let

Si = {(ui, vj) ∈ V (Pm �Kn)|k ≤ j ≤ n}

with |Si| = n− k + 1 for odd i and

Si = {(ui, vj) ∈ V (Pm �Kn)|1 ≤ j ≤ k − 1}

with |Si| = k − 1 for even i, where 1 ≤ i ≤ m. It is
clear that S = ∪mi=1Si is a k-path vertex cover since
the largest connected subgraph of Pm � Kn with all
vertices uncovered is isomorphic to Kk−1. Therefore,
we have

ψk(Pm �Kn) ≤ |S| =


mn
2 , if m is even,

(m+1)n
2 − k + 1,
if m is odd.

Now we show that ψk(Pm � Kn) ≥ |S|. If
m = 2, then the conclusion is true by Lemma 4. Sup-
pose thatm ≥ 3 in the following. We delete the edges
between the two layers u2iKn and u2i+1Kn, where
2 ≤ 2i < 2i+ 1 ≤ m.

If m is even, then the graph Pm � Kn can be
partitioned into m

2 disjoint subgraphs which are iso-
morphic to P2 �Kn. We need at least ψk(P2 �Kn)
vertices to cover each subgraph that is isomorphic to
P2 �Kn. Therefore,

ψk(Pm �Kn) ≥
m

2
ψk(P2 �Kn) =

mn

2
.

If m is odd, then the graph Pm�Kn can be parti-
tioned into m−1

2 disjoint subgraphs which are isomor-
phic to P2 �Kn and a subgraph that is isomorphic to
Kn. We need at least ψk(P2 � Kn) vertices to cov-
er each subgraph that is isomorphic to P2 � Kn and
at least ψk(Kn) vertices to cover the subgraph that is
isomorphic to Kn. Therefore,

ψk(Pm �Kn) ≥ m−1
2 ψk(P2 �Kn) + ψk(Kn)

= (m+1)n
2 − k + 1.

(3) Let vertex (ui, vj) label n(i− 1) + j, and

S = {(ui, vj)|1 ≤ i ≤ m, 1 ≤ j ≤ n,
n(i− 1) + j ≡ l(mod (n+ k − 1)),
l ∈ [k, n+ k − 2] ∪ {0}}.

Clearly, the labels of vertices in V (Pm � Kn) are
[1,mn], and |S| ≥ n since

n+ k − 1 ≤ n+ n⌈m− 1

2
⌉ ≤ n+

mn

2
≤ mn.

We shall show that S is a k-path vertex cover of
Pm�Kn. Let T be the vertex set of any n consecutive
label vertices and T ̸= V (u1Kn). For any such vertex
set T , we have |T ∩V (P

vj
m )| = 1 for every 1 ≤ j ≤ n.

Then, for a fixed such vertex set T , there exist i with
1 ≤ i ≤ m−1, such that V (T ) ⊂ V (uiKn∪ui+1Kn).
There are at most ⌊ mn

n+k−1⌋ groups of such vertex set
T of n consecutive label vertices in S. Remove all
vertices (ui, vj) ∈ S and all edges incident with them
from Pm �Kn. We can get at most ⌈ mn

n+k−1⌉ compo-
nents with order at most k− 1, so S is a k-path vertex
cover of Pm �Kn. If mn ≡ l(mod (n+ k − 1)) for
l ∈ [1, k − 1] ∪ {0}, then

ψk(Pm �Kn) ≤ |S| = n⌊ mn

n+ k − 1
⌋.

If mn ≡ l(mod (n + k − 1)) for l ∈ [k, n + k − 2],
then

ψk(Pm �Kn) ≤ |S| = mn− (k − 1)⌊ mn

n+ k − 1
⌋.

Let

a = ⌈k−1
n ⌉+ 1 ≤ ⌈n⌈

m−1
2

⌉+1−1

n ⌉+ 1
= ⌈m−1

2 ⌉+ 1 ≤ m
2 + 1 ≤ m.

If m = a, then the lower bound is true. Suppose that
m ≥ a + 1. We delete the edges between the two
layers uaiKn and uai+1Kn, where a ≤ ai < ai +
1 ≤ m. We can partition the graph Pm � Kn into r
disjoint subgraphs which are isomorphic to Pa �Kn,
where r = ⌊ m

⌈ k−1
n

⌉+1
⌋. We need at least ψk(Pa�Kn)
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vertices to cover each subgraph that is isomorphic to
Pa �Kn. According to Lemma 5, we have

ψk(Pm �Kn) ≥ rψk(Pa �Kn) ≥ n⌊ m

⌈k−1
n ⌉+ 1

⌋.

Clearly, if mn ≡ l(mod (n + k − 1)) for l ∈
[1, k−1]∪{0}, then the two bounds of ψk(Pm�Kn)
are equal when k ≡ 1(mod n), hence we can get

ψk(Pm �Kn) = n⌊ mn

m+ k − 1
⌋

in this case.
(4) Let

x = ⌈m− 1

2
⌉+ 1

and

S = {(ux, vj) ∈ V (Pm �Kn)|1 ≤ j ≤ n}.

It is easy to see that S is a k-path vertex cover of Pm�
Kn, since the largest connected subgraph of Pm�Kn

with all vertices uncovered is isomorphic to Px−1 �
Kn and

|V (Px−1 �Kn)| = n⌈m− 1

2
⌉ ≤ k − 1.

Therefore,

ψk(Pm �Kn) ≤ |S| = n.

On the other hand, set a = ⌈k−1
n ⌉+ 1. Since

a ≤ ⌈(m− 1)n+ 1− 1

n
⌉+ 1 = m,

Pa �Kn ⊆ Pm �Kn.

According to Lemmas 2 and 5, we have

ψk(Pm �Kn) ≥ ψk(Pa �Kn) ≥ n.

(5) Let S = {(u1, vj) ∈ V (Pm � Kn)|1 ≤
j ≤ mn − k + 1}. It is easy to see that S is a
k-path vertex cover of Pm � Kn, since the order of
the largest connected subgraph of Pm � Kn with al-
l vertices uncovered is at most k − 1. Therefore,
ψk(Pm �Kn) ≤ |S| = mn− k + 1.

On the other hand, the process of proving
ψk(Pm �Kn) ≥ mn − k + 1 is similar to the proof
of Lemma 5. ⊓⊔

As seen in the previous theorems, it is very hard to
determine exact results for product of fixed graphs G
and H . Next we give some lower bounds of ψk(Pm�
Pn) for general m and n.

Theorem 7. If m ≥ 2, n ≥ 2 and k ≥ 2 are positive
integers, then

ψk(Pm � Pn) ≥

max{2⌊ m
⌊ k
2
⌋+1

⌋⌊n2 ⌋+ ⌊
mn−(2⌊ k

2
⌋+2)⌊ m

⌊ k
2 ⌋+1

⌋⌊n
2
⌋

k ⌋,

2⌊ n
⌊ k
2
⌋+1

⌋⌊m2 ⌋+ ⌊
mn−(2⌊ k

2
⌋+2)⌊ n

⌊ k
2 ⌋+1

⌋⌊m
2
⌋

k ⌋}.

Proof. As seen in Fig.1, we partition the graph
Pm � Pn into x disjoint subgraphs which are isomor-
phic toCy, where x = ⌊ m

⌊ k
2
⌋+1

⌋⌊n2 ⌋ and y = 2⌊k2⌋+2.

The remain vertices can construct a path of order z,
where z = mn − xy. We need at least ψk(Cy) ver-
tices to cover each subgraph that is isomorphic to Cy
and at least ψk(Pz) vertices to cover the subgraph that
is isomorphic to Pz . Therefore,

ψk(Pm � Pn) ≥ xψk(Cy) + ψk(Pz) = 2x+ ⌊ zk⌋

= 2⌊ m
⌊ k
2
⌋+1

⌋⌊n2 ⌋+ ⌊
mn−(2⌊ k

2
⌋+2)⌊ m

⌊ k
2 ⌋+1

⌋⌊n
2
⌋

k ⌋.

r r r r r r r r
r r r r r r r r
r r r r r r r r
r r r r r r r r
r r r r r r r r

Figure 1: A partition of Pm � Pn.

Similarly, we can obtain

ψk(Pm � Pn) ≥ 2⌊ n
⌊ k
2
⌋+1

⌋⌊m2 ⌋

+ ⌊
mn−(2⌊ k

2
⌋+2)⌊ n

⌊ k
2 ⌋+1

⌋⌊m
2
⌋

k ⌋.

⊓⊔
Lemma 3 and Theorem 7 give two lower bounds

of ψk(Pn�Pm). When k is relatively small, the lower
bound of Theorem 7 is better than Lemma 3.

Corollary 8. If m is a positive integer, then

ψ5(P2 � Pm) = 2⌊m
3
⌋.

Proof. If m < 3, the conclusion is true. Suppose that
m ≥ 3. We will construct a 5-path vertex cover of
order 2⌊m3 ⌋. Let

S = {(ui, vj)|1 ≤ i ≤ 2, j ≡ 0(mod 3)}.
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It is clear that S is a 5-path vertex cover, since the
largest connected subgraph of P2 � Pm induced with
all vertices uncovered is isomorphic to P2 � P2. So,
we have obtained

ψ5(P2 � Pm) ≤ |S| = 2⌊m
3
⌋.

On the other hand, according to Theorem 7, we
have ψ5(P2 � Pm) ≥ 2⌊m3 ⌋. ⊓⊔

Corollary 9. Letm ≥ 2, n ≥ 2 and k ≥ 2 be positive
integers. For any positive number ε, we have

ψk(Pm � Pn)

|V (Pm � Pn)|
≥ 1

⌊k2⌋+ 1
− ε,

when m and n are large sufficiently.

Proof. Let

m = a(⌊k
2
⌋+ 1) + c

and
n = 2b+ d,

where c ∈ [0, ⌊k2⌋] and d = 0 or 1. According to
Theorem 7, we have

ψk(Pm�Pn)
|V (Pm�Pn)| ≥ 2⌊ m

⌊ k
2
⌋+1

⌋⌊n2 ⌋
1
mn

= 2 m−c
⌊ k
2
⌋+1

n−d
2

1
mn

= (1− c
m − d

n + cd
mn)

1
⌊ k
2
⌋+1

→ 1
⌊ k
2
⌋+1

(m,n→ +∞).

Therefore, we have

ψk(Pm � Pn)

|V (Pm � Pn)|
≥ 1

⌊k2⌋+ 1
− ε,

when m and n are large sufficiently. ⊓⊔
Next we give some lower bounds for ψk(Pm �

P 2
n).

Theorem 10. Let k ≥ 2, m ≥ min{k2 , 2} and n ≥ k
be positive integers. Then

ψk(Pm � P 2
n) ≥

4⌊ n
⌈ k
2
⌉+2

⌋⌊m2 ⌋+ ⌊
mn−(2⌈ k

2
⌉+4)⌊ n

⌈ k
2 ⌉+2

⌋⌊m
2
⌋

k ⌋,
for n ≡ 1(mod (⌈k2⌉+ 2)),

4⌊ n
⌈ k
2
⌉+2

⌋⌊m2 ⌋+ ⌈
mn−(2⌈ k

2
⌉+4)⌊ n

⌈ k
2 ⌉+2

⌋⌊m
2
⌋

k ⌉,
otherwise.

Proof. Let H = P2 � P 2
a , where a = ⌈k2⌉+ 2.

Claim 1. If positive integers k ≥ 2 and a = ⌈k2⌉+ 2,
then ψk(H) = 4, where H = P2 � P 2

a .
If 2 ≤ k ≤ 4, then ψk(H) = 4, so we suppose

that k ≥ 5.
Firstly we construct a k-path vertex cover S with

|S| = 4 to prove that ψk(H) ≤ 4. Let S =
{(u1, v2), (u1, v3), (u2, v2), (u2, v3)}. Remove from
G the vertex (ui, vj) ∈ S and all edges incident with
(ui, vj). We can get two disjoint subgraphs P2 and
P2 � P 2

a−3. Then S is a k-path vertex cover of H ,
since

|V (P2 � P 2
a−3)| = 2⌈k

2
⌉ − 2 ≤ 2

k + 1

2
− 2 = k− 1.

Therefore, ψk(H) ≤ |S| = 4.
Since C2a ⊂ H , ψk(H) ≥ ψk(C2a) = 2. Sup-

pose T is a minimum k-path vertex cover of H with
|T | ≥ 2. Assume two different vertices (ui, vj) and
(up, vq) belong to T and T1 = {(ui, vj), (up, vq)},
where 1 ≤ i, p ≤ 2 and 1 ≤ j, q ≤ a. We can
show that the vertices which belong to V (H) \ T1 al-
ways form a circle of order 2a − 2 or 2a − 3. Since
ψk(C2a−2) = ψk(C2a−3) = 2, we need at least two
more vertices that lie in each constructed circle to be-
long to T . Therefore, ψk(H) = |T | ≥ |T1| + 2 = 4
and then the claim is proved.

r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r

Figure 2: A partition of Pm � P 2
n

for n ≡ 1(mod (⌈k2⌉+ 2)).

As seen in Fig.2, if

n ≡ 1(mod (⌈k
2
⌉+ 2)),

then we can partition the graph Pm�P 2
n into x disjoint

subgraphs which are isomorphic to H and a path of
order y, where

x = ⌊ n

⌈k2⌉+ 2
⌋⌊m

2
⌋
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and

y = mn− x(2⌈k
2
⌉+ 4).

We need at least ψk(H) vertices to cover each sub-
graph that is isomorphic toH and at least ψk(Py) ver-
tices to cover the subgraph that is isomorphic to Py.
Therefore,

ψk(Pm � P 2
n) ≥ xψk(H) + ψk(Py) = 4x+ ⌊ yk⌋

= 4⌊ n
⌈ k
2
⌉+2

⌋⌊m2 ⌋+ ⌊
mn−(2⌈ k

2
⌉+4)⌊ n

⌈ k
2 ⌉+2

⌋⌊m
2
⌋

k ⌋.

r r r r r r r r
r r r r r r r r
r r r r r r r r
r r r r r r r r
r r r r r r r r

Figure 3: A partition of Pm � P 2
n

for n ̸≡ 1(mod (⌈k2⌉+ 2)).

As seen in Fig.3, if

n ̸≡ 1(mod (⌈k
2
⌉+ 2)),

then we can partition the graph Pm�P 2
n into x disjoint

subgraphs which are isomorphic to H and a cycle of
order y, where

x = ⌊ n

⌈k2⌉+ 2
⌋⌊m

2
⌋

and

y = mn− x(2⌈k
2
⌉+ 4).

If m ≡ 0(mod 2) and n ≡ 0(mod (⌈k2⌉ + 2)), then
y = 0; otherwise, y ≥ min{n, 2m} ≥ k. We need
at least ψk(H) vertices to cover each subgraph that is
isomorphic to H and at least ψk(Cy) vertices to cover
the subgraph that is isomorphic to Cy. Therefore,

ψk(Pm � P 2
n) ≥ xψk(H) + ψk(Cy) = 4x+ ⌈ yk⌉

= 4⌊ n
⌈ k
2
⌉+2

⌋⌊m2 ⌋+ ⌈
mn−(2⌈ k

2
⌉+4)⌊ n

⌈ k
2 ⌉+2

⌋⌊m
2
⌋

k ⌉.

⊓⊔

Corollary 11. Let k ≥ 2, m ≥ 2 and n ≥ 2 be
positive integers. Then

ψk(Pm � P 2
n) ≥ 4⌊ n

⌈ k
2
⌉+2

⌋⌊m2 ⌋

+ ⌊
mn−(2⌈ k

2
⌉+4)⌊ n

⌈ k
2 ⌉+2

⌋⌊m
2
⌋

k ⌋.

Proof. We can get the result as the proof of Theorem
10 for n ≡ 1(mod (⌈k2⌉+ 2)), similarly. ⊓⊔

Corollary 12. Let k ≥ 2, m ≥ 2 and n ≥ 2 be
positive integers. For any positive number ε, we have

ψk(Pm � P 2
n)

|V (Pm � P 2
n)|

≥ 2

⌈k2⌉+ 2
− ε,

when m and n are large sufficiently.

Proof. Let n = a(⌈k2⌉ + 2) + c and m = 2b + d,
where c ∈ [0, ⌈k2⌉ + 1] and d = 0 or 1. According to
Corollary 11, we have

ψk(Pm�P 2
n)

|V (Pm�P 2
n)|

≥ 4⌊ n
⌈ k
2
⌉+2

⌋⌊m2 ⌋
1
mn

= 4 n−c
⌈ k
2
⌉+2

m−d
2

1
mn

= 2(1− c
n − d

m + cd
mn)

1
⌈ k
2
⌉+2

→ 2
⌈ k
2
⌉+2

(when m, n→ +∞).

Therefore, for any positive number ε, we have ob-
tained

ψk(Pm � P 2
n)

|V (Pm � P 2
n)|

≥ 2

⌈k2⌉+ 2
− ε,

when m and n are large sufficiently. ⊓⊔
Finally, we give some results for the lexicograph-

ic product of a path and a complete graph. We can ob-
tain the following result by Lemma 5 since Pa�Kn is
a subgraph of Pa ◦Kn. We will present a much easier
proof than Lemma 5.

Lemma 13. If n ≥ 2 and k ≥ n+ 2, then

ψk(Pa ◦Kn) ≥ n,

where a = ⌈k−1
n ⌉+ 1.

Proof. Assume to the contrary that S is a k-path ver-
tex cover of the graph Pa ◦Kn with |S| ≤ n− 1. Let
Si = S ∩ V uiKn with |Si| = ni, where 1 ≤ i ≤ a.
Therefore, lying in the layer uiKn, all the vertices that
are not covered by Si can construct a path Pi of order
n−ni. Let the original vertex of Pi be (ui, vi) and the
terminate vertex of Pi be (ui, wi), where 1 ≤ i ≤ a.
Set

P = P1 + (u1, w1)(u2, v2) + P2 + (u2, w2)(u3, v3)
+ P3 + · · ·+ (ua−1, wa−1)(ua, va) + Pa.
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Therefore

|V (P )| =
a∑
i=1

Pi

= an−
a∑
i=1

ni

= (⌈k−1
n ⌉+ 1)n− (n− 1)

≥ (k−1
n + 1)n− (n− 1)

= k.

We have a path of order at least k with no vertices in
S, a contradiction. ⊓⊔

Theorem 14. For m ≥ 2 and n ≥ 2, the following
results hold.

(1) If 2 ≤ k ≤ n+ 1, then

ψk(Pm◦Kn) =

{
m(2n−k+1)

2 , if m is even,
(m+1)(2n−k+1)

2 − n, if m is odd.

(2) If n+ 1 < k < n⌈m−1
2 ⌉+ 1, then

n⌊ m

⌈k−1
n ⌉+ 1

⌋ ≤ ψk(Pm ◦Kn) ≤ n⌊ m

⌊k−1
n ⌋+ 1

⌋.

Moreover, if k ≡ 1(mod n), then

ψk(Pm ◦Kn) = n⌊ mn

n+ k − 1
⌋.

(3) If n⌈m−1
2 ⌉+ 1 ≤ k ≤ (m− 1)n+ 1, then

ψk(Pm ◦Kn) = n.

(4) If (m− 1)n+ 2 ≤ k ≤ mn, then

ψk(Pm ◦Kn) = mn− k + 1.

Proof. (1) Firstly we will construct a k-path vertex
cover S to obtain the upper bound. Let

Si = {(ui, vj) ∈ V (Pm ◦Kn)|k ≤ j ≤ n}

with |Si| = n− k + 1 for odd i and

Si = {(ui, vj) ∈ V (Pm ◦Kn)|1 ≤ j ≤ n}

with |Si| = n for even i, where 1 ≤ i ≤ m. It is
clear that S = ∪mi=1 Si is a k-path vertex cover since
the largest connected subgraph of Pm ◦ Kn with all
vertices uncovered is isomorphic to Kk−1. Therefore,

ψk(Pm◦Kn) ≤ |S| =


m(2n−k+1)

2 , if m is even,
(m+1)(2n−k+1)

2 − n,
if m is odd.

Now we will show the lower bound. It is easy to
see that P2◦Kn

∼= K2n and thus ψk(P2◦Kn) = 2n−

k + 1. If m = 2, then the conclusion is true. Suppose
m ≥ 3, we delete the edges between the two layers
u2iKn and u2i+1Kn, where 2 ≤ 2i < 2i+ 1 ≤ m.

If m is even, then the graph Pm ◦Kn can be par-
titioned into m

2 disjoint subgraphs which are isomor-
phic to P2 ◦Kn. Hence, we have

ψk(Pm ◦Kn) ≥
m

2
ψk(P2 ◦Kn) =

m(2n− k + 1)

2
.

If m is odd, then the whole graph Pm ◦Kn can be
partitioned into m−1

2 disjoint subgraphs which are iso-
morphic to P2 ◦Kn and a subgraph that is isomorphic
to Kn. Therefore,

ψk(Pm ◦Kn) ≥ m−1
2 ψk(P2 ◦Kn) + ψk(Kn)

= (m+1)(2n−k+1)
2 − n.

(2) Let

a = ⌈k−1
n ⌉+ 1 ≤ ⌈n⌈

m−1
2

⌉+1−1

n ⌉+ 1
= ⌈m−1

2 ⌉+ 1 ≤ m
2 + 1 ≤ m.

If m = a, then the lower bound is true. Suppose m ≥
a + 1, we delete the edges between the two layers
uiaKn and uia+1Kn, where 1 ≤ ia < ia+1 ≤ n. The
graph Pm ◦ Kn can be partitioned into ⌊ma ⌋ disjoint
subgraphs which are isomorphic to Pa ◦Kn. We need
at least ψk(Pa ◦Kn) vertices to cover each subgraph
that is isomorphic to Pa ◦ Kn. According to Lemma
13, we have

ψk(Pm ◦Kn) ≥ ⌊m
a
⌋ψk(Pa ◦Kn) ≥ n⌊ m

⌈k−1
n ⌉+ 1

⌋.

On the other hand, let b = ⌊k−1
n ⌋ + 1 ≤ a ≤ m

and r = ⌊mb ⌋ ≥ 1. Set Si = {(uib, vj) ∈ V (Pm ◦
Kn)

∣∣ 1 ≤ j ≤ n} with |Si| = n for 1 ≤ i ≤ r.
It is clear that S = ∪ri=1Si is a k-path vertex cover
of Pm ◦ Kn, since the order of the largest connected
subgraph of Pm ◦Kn with all vertices uncovered is at
most

n(b− 1) = n⌊k − 1

n
⌋ ≤ k − 1.

So,

ψk(Pm ◦Kn) ≤ |S| = nr = n⌊ m

⌊k−1
n ⌋+ 1

⌋.

Clearly, when k ≡ 1(mod n), the two bounds of
ψk(Pm ◦Kn) are equal, hence we can obtain that

ψk(Pm ◦Kn) = n⌊ mn

n+ k − 1
⌋

in this case.
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(3) Let x = ⌈m−1
2 ⌉ + 1 and S = {(ux, vj) ∈

V (Pm ◦ Kn)|1 ≤ j ≤ n}. It is easy to see that S
is a k-path vertex cover of Pm ◦Kn since the largest
connected subgraph of Pm ◦Kn with all vertices un-
covered is isomorphic to Px−1 ◦Kn and

|V (Px−1 ◦Kn)| = n(x− 1) = n⌈m− 1

2
⌉ ≤ k − 1.

Therefore,

ψk(Pm ◦Kn) ≤ |S| = n.

On the other hand, set

a = ⌈k − 1

n
⌉+ 1.

Since

a = ⌈k − 1

n
⌉+ 1 ≤ ⌈(m− 1)n+ 1− 1

n
⌉+ 1 = m,

Pa ◦Kn ⊆ Pm ◦Kn.

According to Lemmas 2 and 13, we have

ψk(Pm ◦Kn) ≥ ψk(Pa ◦Kn) ≥ n.

(4) Let

S = {(u1, vj) ∈ V (Pm ◦Kn)|1 ≤ j ≤ mn− k+1}.

It is easy to see that S is a k-path vertex cover of Pm ◦
Kn, since the order of the largest connected subgraph
of Pm◦Kn with all vertices uncovered is at most k−1.
Therefore,

ψk(Pm ◦Kn) ≤ |S| = mn− k + 1.

On the other hand, it is easy to prove that

ψk(Pm ◦Kn) ≥ mn− k + 1

as Lemma 13 similarly. ⊓⊔
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